
 

 

3.1.1 Identifying ‘Sensing’ deviations 

Practical guidance – cross-domain and maritime (maritime specific guidance is 
indicated in blue) 

Authors: ALADDIN demonstrator project 

Summary 

This Body of Knowledge entry describes guidance to identify sensing deviations for robotic 
and autonomous systems (RAS) and design appropriate autonomous anomaly detection 
solutions. 

Who this guidance is for:  

• Condition monitoring engineers 

• RAS operators 

• RAS designers 

Background 

Correct sensing of the RAS’ state and the surrounding environment is fundamental for the 
safe operation of RAS. However, despite the designer’s best efforts, RAS can malfunction 
during operation, as they develop faults. Therefore, it is critical to design RAS with 
embedded autonomous systems to correctly identify anomalous behaviour so that suitable 
corrective actions can be taken and the RAS’ maintenance policy can be informed. 
Identifying unexpected performance based on sensor readings is key to producing an 
effective anomaly detection system.  

Regulations for condition monitoring systems can be found in the ISO standards 13372:2012 
[1] and 26262-1:2018 [2] for machines and road vehicles, respectively. This Body of 
Knowledge entry describes best practices for the real-time identification of sensing 
deviations of RAS to assure their operations. The proposed solutions are data-driven and 
have been developed for and tested with Marine Autonomous Systems (MAS) and in 
particular underwater gliders, although they can be transferred to any other RAS 
applications thanks to their generality. 

Stage input and output artefacts 

Required input/existing knowledge: 

• List of all sensors on the RAS – the list should clearly label any redundant sensors on 

over-observed systems 

• Signal output from all sensors, including both readings and the associated time 

stamps, synced for the RAS 

• Knowledge of the dynamics of the RAS (desirable, especially for under-observed 

systems) 
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• Failure Mode Effect Analysis (FMEA) for the RAS (desirable), which can be completed 

according to the IEC 60812:2018 standards [3] 

• Hazard and Operability study (HAZOP) for the RAS (desirable), which can be 

completed according to the IEC 61882:2016 standards [4] 

• Formal description of the baseline RAS behaviour 

• Metadata (e.g. calibration, system configuration, deployment reports or operator 

logs) to enable understanding of wider context 

• Training and validation datasets for baseline RAS behaviour – data from multiple RAS 

within a fleet would be ideal 

• Testing datasets for anomalous RAS behaviour – data of a wide range of anomalies 

would be ideal. 

Assumptions: 

• Sensing requirements, as defined in Section 2.2.1.1 of the Body of Knowledge, are 

met, i.e. the installed sensors are appropriate for the RAS 

• The incoming volume of data is manageable in real-time with the installed 

processing power. 

Expected outputs: 

• The system is able to autonomously detect anomalies and inform the operator 

accordingly. 

Procedure and activities 

Figure 1 shows an overview of a procedure that can be used to identify sensing deviation for 
a RAS. In this section, further details are provided for each step. 

 

Figure 1 – Summary of the procedure to identify sensing deviations of RAS. 

1. Data cleaning: the following steps need to be performed to clean both the training, 

validation and test datasets as well as the RAS stream data during deployment. 

a. Signal processing and data treatment (e.g. [5], [6]), including filtering, 

antialiasing, data augmentation if signal is lost, and resampling of the signals 

from all sensors for the same time stamps. 

b. Feature engineering: 

i. Data fusion to combine the signals from multiple sensors 
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https://www.york.ac.uk/assuring-autonomy/body-of-knowledge/implementation/2-2/2-2-1/2-2-1-1/
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ii. Design observers (or estimators) to generate additional virtual signals 
from dynamic models. This is critical for under-observed systems, like 
Autonomous Underwater Vehicles (AUVs). AUV example: The 
buoyancy force acting on underwater vehicles can be obtained from 
the signals of the net volume of the vehicle and the water density, 
pressure (compressibility) and temperature (expansivity). 

c. In some applications, the RAS can spend significant time in steady-state 

operations (e.g. steady-state flight at a constant speed). In this case, 

removing transient effects from the data can be considered to reduce the 

computational cost and improve real-time performance, although fully 

dynamic effects can be important for most RAS. 

2. Dataset creation: creation of suitable datasets for the development of the anomaly 

detection system. 

a. Training dataset – baseline RAS operating conditions (1.0×105 samples used 

for the case study of underwater gliders [7]) 

b. Validation dataset for hyperparameter selection – baseline RAS operating 

conditions (1.0×105 samples used for the case study of underwater gliders) 

c. Test datasets – baseline RAS operating conditions in addition to a range of 

different anomalies, trying to include all the anomalies identified by the 

FMEA if the data is available (4.3×104 samples used for the case study of 

underwater gliders for seven different anomalies). 

3. Development: the anomaly detection system is designed and developed according 

to the method described in the next section and in references [7]. 

4. Training: the anomaly detection system is trained using the previously prepared 

training dataset. Different signals can be selected as input during this stage to assess 

improvements in performance (prediction accuracy and computational cost). 

5. Validation: the hyperparameters of the network (e.g. size of the Deep Neural 

Networks (DNNs)), are selected with a sensitivity analysis to improve prediction 

accuracy and computational cost and prevent overfitting on the validation dataset. 

6. Test: the ability of the anomaly detection system in correctly identifying and 

labelling baseline and anomalous behaviour is assessed for the test datasets. In 

particular, sensing deviations are quantified and visualised (see an example in Figure 

2). 

7. Sensitivity analysis: handling large quantities of data in real-time is challenging or 

there can be constraints associated with data transmission (e.g. if undertaken by 

satellite). Therefore, the data needs to be decimated, i.e. collected at larger time 

steps, during actual deployment. The sensitivity analysis on the data decimation 

settings indicates whether the proposed anomaly detection system is insensitive to 

the selected sample time in the data decimation. For underwater gliders, the 

proposed anomaly detection method is insensitive to the data decimation settings, 

suggesting its robustness in Near-Real-Time (NRT) anomaly detection. 

8. Deployment: the anomaly detection system’s architecture is updated to enable its 

real-time deployment for the RAS operations. 
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Figure 2 - An example of anomaly detection results of an underwater glider that lost one of its wing: (a) 
anomaly scores compared against the baseline and (b) sensing deviations quantified and visualised [16] 

Method 

RAS operating in both steady and dynamic operations can have different numbers of 
sensors in different applications and can also be under-observed with restricted data 
transmission capability.  

An example of a RAS operating in steady-state condition is an underwater glider during 
flight, whereas an example of a RAS in dynamic operations is the glider at the bottom of the 
dive, using its actuators to start the ascent.  

The method proposed in this study has prioritised generalisability and transferability for 
RAS, such that multivariate time series data from a variable number of sensors with 
different sampling rates can be augmented in a standardised data structure which can be 
fed to the DNN of the BiGAN for anomaly system training, validation and testing (Figure 3). 
Multi-dimensional matrices are used to store the multivariate time series data from RAS to 
capture the operational features (including both steady and dynamic states) within a short 
period. Multiple data patches in matrices can be sampled from a variable length of 
operational cycles to reflect the anomaly levels with flexibility. 

 

Figure 3 - Workflow of unsupervised anomaly detection using GAN for underwater gliders. 

Figure 4 shows the proposed anomaly detection framework using BiGAN. In the training 
phase, the pre-processed healthy deployment datasets are applied to train the generator G, 
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encoder E and discriminator D concurrently. Assistive hints are applied to guide the 
generator G and encoder E training periodically. In the test phase, the reconstruction error 
and discriminator feature hint error jointly represent the degree of an anomaly. 

 

Figure 4 - Anomaly detection using BiGAN for MAS: (a) training using normal data and (b) testing using unseen 
deployment data. 

Advantages of the approach 

• The approach is general, so that the anomaly detection method can be transferred 

to different technologies or even sectors, as long as the model-based virtual sensors 

are updated by the designer for the specific field of application and the input and 

output signals to the BiGAN updated; 

• The approach is scalable, so that its application can be easily scaled to large fleets of 

RAS. 

Limitations of the approach 

• Approach needs large quantities of data for existing systems – 1.0×105 samples have 

been used to train the anomaly detection system for underwater gliders, with 

1.0×105 samples used for validation 4.3×104 for testing [7]. The training dataset 

needs to be large enough to represent normal operations.  

• Training, validation and testing require significant computational resources and time. 

Hence, at this stage, these steps should be undertaken offline, if possible on 

computer clusters. The training time under current settings is 51 min on a Nvidia 

V100 GPU for the underwater gliders [7]. Conversely, once trained the system has a 

low computational cost, so it can be applied in real-time on the RAS, depending on 

the time step length and the number of real and virtual signals.  

• For new systems, dynamic models can be used to generate synthetic data and 

experimental tests for validation; however, domain adaption is then necessary to 

transfer the learning to the full-scale prototype. 
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