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Summary

This Body of Knowledge entry describes guidance to identify sensing deviations for robotic
and autonomous systems (RAS) and design appropriate autonomous anomaly detection
solutions.

Who this guidance is for:

e Condition monitoring engineers
e RAS operators
e RAS designers

Background

Correct sensing of the RAS’ state and the surrounding environment is fundamental for the
safe operation of RAS. However, despite the designer’s best efforts, RAS can malfunction
during operation, as they develop faults. Therefore, it is critical to design RAS with
embedded autonomous systems to correctly identify anomalous behaviour so that suitable
corrective actions can be taken and the RAS’ maintenance policy can be informed.
Identifying unexpected performance based on sensor readings is key to producing an
effective anomaly detection system.

Regulations for condition monitoring systems can be found in the ISO standards 13372:2012
[1] and 26262-1:2018 [2] for machines and road vehicles, respectively. This Body of
Knowledge entry describes best practices for the real-time identification of sensing
deviations of RAS to assure their operations. The proposed solutions are data-driven and
have been developed for and tested with Marine Autonomous Systems (MAS) and in
particular underwater gliders, although they can be transferred to any other RAS
applications thanks to their generality.

Stage input and output artefacts
Required input/existing knowledge:

e List of all sensors on the RAS — the list should clearly label any redundant sensors on
over-observed systems

e Signal output from all sensors, including both readings and the associated time
stamps, synced for the RAS

e Knowledge of the dynamics of the RAS (desirable, especially for under-observed
systems)



Failure Mode Effect Analysis (FMEA) for the RAS (desirable), which can be completed
according to the IEC 60812:2018 standards [3]

Hazard and Operability study (HAZOP) for the RAS (desirable), which can be
completed according to the IEC 61882:2016 standards [4]

Formal description of the baseline RAS behaviour

Metadata (e.g. calibration, system configuration, deployment reports or operator
logs) to enable understanding of wider context

Training and validation datasets for baseline RAS behaviour — data from multiple RAS
within a fleet would be ideal

Testing datasets for anomalous RAS behaviour — data of a wide range of anomalies
would be ideal.

Assumptions:

Sensing requirements, as defined in Section 2.2.1.1 of the Body of Knowledge, are
met, i.e. the installed sensors are appropriate for the RAS

The incoming volume of data is manageable in real-time with the installed
processing power.

Expected outputs:

The system is able to autonomously detect anomalies and inform the operator
accordingly.

Procedure and activities

Figure 1 shows an overview of a procedure that can be used to identify sensing deviation for
a RAS. In this section, further details are provided for each step.
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Figure 1 — Summary of the procedure to identify sensing deviations of RAS.

Data cleaning: the following steps need to be performed to clean both the training,
validation and test datasets as well as the RAS stream data during deployment.

a. Signal processing and data treatment (e.g. [5], [6]), including filtering,
antialiasing, data augmentation if signal is lost, and resampling of the signals
from all sensors for the same time stamps.

b. Feature engineering:

i. Data fusion to combine the signals from multiple sensors
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ii. Design observers (or estimators) to generate additional virtual signals
from dynamic models. This is critical for under-observed systems, like
Autonomous Underwater Vehicles (AUVs). AUV example: The
buoyancy force acting on underwater vehicles can be obtained from
the signals of the net volume of the vehicle and the water density,
pressure (compressibility) and temperature (expansivity).

c. Insome applications, the RAS can spend significant time in steady-state
operations (e.g. steady-state flight at a constant speed). In this case,
removing transient effects from the data can be considered to reduce the
computational cost and improve real-time performance, although fully
dynamic effects can be important for most RAS.

2. Dataset creation: creation of suitable datasets for the development of the anomaly
detection system.
a. Training dataset — baseline RAS operating conditions (1.0x10° samples used
for the case study of underwater gliders [7])
b. Validation dataset for hyperparameter selection — baseline RAS operating
conditions (1.0x10° samples used for the case study of underwater gliders)
c. Test datasets — baseline RAS operating conditions in addition to a range of

different anomalies, trying to include all the anomalies identified by the
FMEA if the data is available (4.3x10% samples used for the case study of
underwater gliders for seven different anomalies).

3. Development: the anomaly detection system is designed and developed according
to the method described in the next section and in references [7].
4. Training: the anomaly detection system is trained using the previously prepared

training dataset. Different signals can be selected as input during this stage to assess
improvements in performance (prediction accuracy and computational cost).

5. Validation: the hyperparameters of the network (e.g. size of the Deep Neural
Networks (DNNs)), are selected with a sensitivity analysis to improve prediction
accuracy and computational cost and prevent overfitting on the validation dataset.

6. Test: the ability of the anomaly detection system in correctly identifying and
labelling baseline and anomalous behaviour is assessed for the test datasets. In
particular, sensing deviations are quantified and visualised (see an example in Figure
2).

7. Sensitivity analysis: handling large quantities of data in real-time is challenging or
there can be constraints associated with data transmission (e.g. if undertaken by
satellite). Therefore, the data needs to be decimated, i.e. collected at larger time
steps, during actual deployment. The sensitivity analysis on the data decimation
settings indicates whether the proposed anomaly detection system is insensitive to
the selected sample time in the data decimation. For underwater gliders, the
proposed anomaly detection method is insensitive to the data decimation settings,
suggesting its robustness in Near-Real-Time (NRT) anomaly detection.

8. Deployment: the anomaly detection system’s architecture is updated to enable its
real-time deployment for the RAS operations.
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Figure 2 - An example of anomaly detection results of an underwater glider that lost one of its wing: (a)
anomaly scores compared against the baseline and (b) sensing deviations quantified and visualised [16]

Method

RAS operating in both steady and dynamic operations can have different numbers of
sensors in different applications and can also be under-observed with restricted data

transmission capability.

An example of a RAS operating in steady-state condition is an underwater glider during
flight, whereas an example of a RAS in dynamic operations is the glider at the bottom of the
dive, using its actuators to start the ascent.

The method proposed in this study has prioritised generalisability and transferability for
RAS, such that multivariate time series data from a variable number of sensors with
different sampling rates can be augmented in a standardised data structure which can be
fed to the DNN of the BiGAN for anomaly system training, validation and testing (Figure 3).

Multi-dimensional matrices are used to store the multivariate time series data from RAS to

capture the operational features (including both steady and dynamic states) within a short
period. Multiple data patches in matrices can be sampled from a variable length of
operational cycles to reflect the anomaly levels with flexibility.
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Figure 3 - Workflow of unsupervised anomaly detection using GAN for underwater gliders.

Figure 4 shows the proposed anomaly detection framework using BiGAN. In the training
phase, the pre-processed healthy deployment datasets are applied to train the generator G,
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encoder E and discriminator D concurrently. Assistive hints are applied to guide the
generator G and encoder E training periodically. In the test phase, the reconstruction error
and discriminator feature hint error jointly represent the degree of an anomaly.
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Figure 4 - Anomaly detection using BiGAN for MAS: (a) training using normal data and (b) testing using unseen

deployment data.

Advantages of the approach

The approach is general, so that the anomaly detection method can be transferred
to different technologies or even sectors, as long as the model-based virtual sensors
are updated by the designer for the specific field of application and the input and
output signals to the BiGAN updated;

The approach is scalable, so that its application can be easily scaled to large fleets of
RAS.

Limitations of the approach

Approach needs large quantities of data for existing systems — 1.0x10° samples have
been used to train the anomaly detection system for underwater gliders, with
1.0x10° samples used for validation 4.3x10% for testing [7]. The training dataset
needs to be large enough to represent normal operations.

Training, validation and testing require significant computational resources and time.
Hence, at this stage, these steps should be undertaken offline, if possible on
computer clusters. The training time under current settings is 51 min on a Nvidia
V100 GPU for the underwater gliders [7]. Conversely, once trained the system has a
low computational cost, so it can be applied in real-time on the RAS, depending on
the time step length and the number of real and virtual signals.

For new systems, dynamic models can be used to generate synthetic data and
experimental tests for validation; however, domain adaption is then necessary to
transfer the learning to the full-scale prototype.
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